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MAXIMUM LIFT-DRAG-RATIO CHARACTEBISTICS O F  

RECTANGULAR AND DEICTA WINGS AT MACH 6.9 

By J i m  A. Penland 
Langley Research Center 

SUMMARY 

A theo re t i ca l  and experimental study of a var ie ty  of rectangular and de l t a  
planform wings a t  a Mach number of 6.9 and a range of root-chord Reynolds num- 
bers  from 0.35 x 10 t o  4 .1  x 10 has been made. T h i s  study shows t h a t  good 
predictions of 
predicted f o r  d e l t a  wings i s  approximately 10 percent higher than 
t h a t  fo r  experiment. 

6 6 
(L/D)max a re  possible on rectangular wings but t h a t  the  

(L/D),, 

Severe losses  of (L/D)max occur w i t h  decreasing Reynolds number f o r  a l l  
configurations and it may be infer red  t h a t  

3 w i l l  be d i f f i c u l t  t o  a t t a i n  a t  low Reynolds numbers (Reynolds numbers l e s s  

than 0 . 1  x lo6) on configurations having useful  volume. 
f igura t ion  shows the  highest 

interference can occur. 

(L/D)max values greater  than about 

The flat-bottom con- 
(L/D),,x on simple shapes where no favorable 

Thickness r a t i o  and aspect r a t i o  i n  t h a t  order a r e  prime fac tors  a f fec t ing  
(L/D)max i r respec t ive  of planform geometry. Within a family of  shapes the  
optimum shape may be determined by use of a composite p lo t  of aspect r a t io ,  
thickness r a t i o ,  volume-area r a t i o ,  and 
curve of one-half t h e  cotangent of t h e  average angle of a t tack  appears t o  form 
an upper boundary f o r  both calculated and experimental values of  
rectangular- and delta-wedge wings. 

(L/D)max. A t  a Mach number of 6.9 the  

(L/D)mx f o r  

INTRODUCTION 

I n  the  hypersonic f l i g h t  of vehicles  capable of long-range c ru ise  f o r  
t ransport ,  reconnaissance or bombing missions, and o r b i t a l  boost g l ide r s  w i t h  
g lobal  landing poten t ia l ,  t h e  need f o r  an e f f i c i e n t  hypersonic configuration 
prevai ls .  The maximum l i f t - d r a g  r a t i o  of a vehicle is, of course, indicat ive 
of i t s  aerodynamic eff ic iency.  
various shapes (refs. 1 t o  l3), there  are in su f f i c i en t  experimental o r  theoret-  
i c a l  s tud ies  avai lable  i n  which the  various geometric parameters a r e  varied 

Although some hypersonic data a r e  avai lable  on 



through wide ranges to establish trends which point toward optimum configura- 
tions. 
wing-body shape, a blended wing-body, or a sophisticated lifting body is there- 
fore, at present, an open question. To provide information on which an intel- 
ligent decision can be based, investigations of various shapes are currently 
underway at the NASA Langley Research Center. 
results obtained in body-wing (half-cone delta wing) and lifting-body configu- 
rations. The present paper presents results of a theoretical and experimental 
investigation conducted to determine the effects of leading-edge sweep, thick- 
ness ratio, aspect ratio, volume, and Reynolds number on the maximum lift-drag 
ratio of sharp-leading-edge delta- and rectangular-wedge wings. 

Whether these vehicles will eventually take the form of a distinct 

References 14 to 17 present 

SYMBOLS 

A 

b 

C 

- 
C 

CA 

CD 

CF 

CL 

Cm 

CN 

'N,m 

FA 

Fb 

FF 

aspect ratio 

wing span 

wing chord 

root chord of delta wing 

mean aerodynamic chord 

axial-force coefficient (FA - 'b)/%% 
drag coefficient, FD'/~Sp 

average skin-friction coefficient, FF/~Sp 

lift coefficient, FL/&,Sp 

pit ching-moment coefficient , 

normal-force coefficient, FN/%sp 

normal-force coefficient for A = m 

axial force 

base-pressure correction, (pm - pblsb 

average skin friction 

yC /&,%E 

FD' = FN sin a + (FA - Fb)cos a 
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FL = FN cos a + Fb - F s i n  a ( A) 

'b 

'P 

t 

v 
a 

a av 

8 

A 

normal force  

l i f t - d r a g  r a t i o ,  CL/CD 

maximum l i f t -d rag  r a t i o  

free-stream Mach number 

pi tching moment 

base pressure 

free-stream s t a t i c  pressure 

free-stream dynamic pressure 

free-stream Reynolds number based on maximum chord unless otherwise 
s t a t e d  

base a rea  of wing 

planform area  of wing 

maximum thickness 

t o t a l  volume of wing 

angle of  a t tack ,  deg 

average angle of a t tack,  e 
a - z, deg 

wedge angle, deg 

sweep angle of wing leading edge, deg 

MODELS 

Photographs of most of t h e  models t e s t e d  a r e  shown i n  f igure  1 and t h e  
geometric d e t a i l s  of a l l  models are presented i n  f igu re  2. These p a r t i c u l a r  
wedge wing models although of d i f f e ren t  planform have t h e i r  e n t i r e  volumes 
encompassed within the  so-called shadow region a t  an angle of a t t ack  equal 
t o  tan-' The re la t ionship  of aspect r a t i o ,  volume, thickness r a t i o ,  and 

C '  
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leading-edge sweep angle f o r  wedges i s  presented i n  appendix A. 
were machined from s o l i d  aluminum-alloy stock with care  taken t o  maintain a l l  
leading edges as sharp as possible.  Upon completion, these leading-edge radii 
w e r e  measured and found t o  be between 0.001 and 0.004 inch f o r  a l l  models. 

A l l  models 

APPARATUS, TESTS, AND DATA ACCURACY 

The tests w e r e  conducted i n  t h e  Mach number 6.86 t e s t  section of t he  
Langley 11-inch hypersonic tunnel. The tunnel-wall boundary-layer thickness, 
and hence the  free-stream Mach number of t h i s  t e s t  section, i s  dependent upon 
t h e  stagnation pressure. 
5 t o  30 atmospheres and the  minimum stagnation temperature used varied from 
5000 F t o  620° F, respect ively ( t o  avoid a i r  l iquefac t ion) .  
range of Mach numbers w a s  about 6.7 t o  6.9 and range of Reynolds numbers w a s  
0.06 x 10 6 t o  0.34 x 10 6 per  inch. 
1.9 x 10-5 pounds of water pe r  pound of dry a i r  f o r  a l l  tests. 

For these tests, t he  stagnation pressure varied from 

The resu l t ing  

The absolute humidity w a s  kept t o  less than 

Three-component force  data were obtained by use of a strain-gage balance 
The axial-force compo- through an angle-of-attack range of about -6' t o  18O. 

nent w a s  adjusted for differences between t h e  measured base pressure and t h e  
free-stream s t a t i c  pressure. The difference between individual  spanwise base- 
pressure readings w a s  within the  accuracy of t he  pressure-measuring instruments. 
The maximum root-mean-square (rms) values of t h e  uncer ta in t ies  i n  the  measure- 
ment of t h e  force and moment coef f ic ien ts  f o r  t h e  individual  tes t  points  a t  
(L/D)ms 
kO.5 percent f u l l  sca le  and t h e  s e t t i n g  of angle of a t t ack  a r e  presented as 
follows: 

as a result of t h e  force-balance system which has an accuracy of 

RMS values of 
uncer ta in t ies  i n  

Model 1 at 
R = 0.73 X lo6 

~ 

*O .003 
Kl .001 
+o. 191 

fo  .0018 

- . . . - . - . - 

Model 5 at  
R = 0.73 x 106 

+o .01 
fo .003 
fO . 53 

+O .0@4 

Errors i n  p lo t ted  values of 
because of t h e i r  having been read from faired curves. Data measured at  higher 
Reynolds numbers w i l l  have proportionally smaller e r ro r s  due t o  higher loading 
of t h e  strain-gage force  balance. 
accuracy of kl.5 inches of mercury, and angle of a t t ack  w a s  s e t  t o  an accuracy 
of +0.20°. 
rac ies  i n  s e t t i n g  angle of a t tack . )  

(L/D),, should be l e s s  than those tabulated 

The stagnation pressure w a s  measured t o  an 

(See appendix B f o r  a discussion of possible e r r o r  due t o  inaccu- 
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THEORY 

The calculations of t h e  inv isc id  longitudinal charac te r i s t ics  of t he  d e l t a  
and. rectangular wedge shapes presented i n  t h i s  report  were made by shock- 
expansion theory using t h e  oblique shock and Prandtl-Meyer expansion tables of 
reference 18. 
methods of reference 19 which include the  boundary-layer-displacement e f f ec t s  
on the  f r i c t i o n a l  drag component. Two types of t i p  correction were applied t o  
t h e  rectangular w i n g s .  The v e r t i c a l  s ide  areas were corrected f o r  viscous 
e f f ec t s  by assuming them t o  be d e l t a  w i n g s  f o r  purposes of sk in- f r ic t ion  calcu- 
l a t ion .  Decreases i n  pressure coeff ic ients  near t h e  t i p  due t o  f i n i t e  aspect- 
r a t i o  e f f ec t s  were accounted f o r  by use of l i n e a r  theory based on free-stream 
Mach angle as presented i n  reference 20. 

E s t i m a t e s  of laminar skin-fr ic t ion coef f ic ien ts  were made by t h e  

The l i f t -drag  r a t i o  of high-efficiency bodies i s  strongly influenced by 
the  e f f ec t s  of skin f r i c t i o n  and i t s  marked var ia t ions  with Reynolds number. 
This influence i s  readi ly  i l l u s t r a t e d  by calculating, f o r  t h e  zero-thickness 
f la t  plate ,  t h e  change of l i f t -d rag  r a t i o  with var ia t ions  of Reynolds number 
and angle of a t tack .  Figure 3 presents t he  results of such a calculat ion f o r  
both two-dimensional and delta-planform wings i n  laminar flow a t  a free-stream 
Mach number of 6.9. (Within t h e  confines of t he  theory used herein, d e l t a  
wings are unaffected by var ia t ions  of aspect r a t i o . )  A s  a l imi t ing  case ( sk in  
f r i c t i o n  equal zero, corresponding t o  i n f i n i t e  Reynolds number), t h e  curve of 
cot u i s  shown. These curves i l l u s t r a t e  t he  severe decay of L/D throughout 
t h e  angle-of-attack range with decreasing Reynolds number. The fu r the r  
decrease of L/D 
Reynolds number associated with shorter  average chord. A s ign i f icant  t rend  
showing t h a t  t h e  
t h e  m a x i m u m  value increases i s  important due t o  t h e  correspondingly lower l i f t  
coeff ic ients  a t  
high L/D. The locus of these points  of (L/D)" f o r  both t h e  two-dimensional 
and delta-planform f l a t  p l a t e s  may be represented by the  curve (co t  u)/2, and 
thus represents a more reasonable l imi t ing  boundary f o r  the  case of skin f r i c -  
t i o n  grea te r  than zero a t  hypersonic speeds. Since l inear ized  theory shows 
t h a t  a = t a n  a. 
This boundary w i l l  be discussed i n  more d e t a i l  subsequently. 

f o r  t h e  delta planform wings i s  due t o  t h e  lower e f fec t ive  

(L/D)max occurs a t  successively lower angles of a t t ack  as 

and the  decrease of t h e  angle-of-attack range f o r  (L/D),= 

(L/D)mx = 1/2u, t h i s  l imi t ing  curve i s  obtained by assuming 

The crossplot of (L/D)max w i t h  Reynolds number ( i n s e t  of f i g .  3) pro- 
vides a summary of what may be expected within a very l imited range of Reynolds 
numbers f o r  f l a t - p l a t e  w i n g s .  The addi t ion of aspec t - ra t io  e f f ec t s  t o  t h e  
ove ra l l  calculations of t h e  two-dimensional shapes shows t h e  losses  t o  be 
expected for somewhat more r e a l i s t i c  planforms. 
based on vehicle length, a rectangular w i n g  having an aspect r a t i o  of 0.35 i s  
only s l i g h t l y  b e t t e r  than a d e l t a  planform with i t s  high viscous losses  i n  t h e  
t i p  regions. 

For a given Reynolds number 

It is  indicated from t h i s  t heo re t i ca l  study a t  M = 6.9 t h a t  losses  i n  

( L / D ) m a  w i l l  increase with Mach number 
(L/D)max 
fu r the r  an t ic ipa ted  t h a t  losses  i n  
because of t h e  r a t e  of increase of boundary-layer-displacement e f f ec t s  
( r e f .  14) .  

are t o  be expected with any decrease i n  Reynolds number. It may be 
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RESULTS AND DISCUSSION 

To show a comparison between theory and experiment throughout t h e  angle- 
of-attack range, the  r e s u l t s  of four  representat ive tests, two of rectangular 
wings (models 6 and 10) and two of roof d e l t a  wings (models 1 and 5 )  a r e  pre- 
sented i n  f igure  4. 
(models 6 and 1) and 0.35 (models 10 and 5 )  and ~olume*/~-planform-area r a t i o s  
of 0.147 (models 6 and 1) and 0.210 (models 10 and 5 ) .  The thickness r a t i o  of 
t h e  rectangular wings w a s  s l i g h t l y  g rea t e r  than t h a t  of t he  d e l t a  w i n g s  due t o  
t h e  var ia t ion  i n  geometry necessary t o  keep t h e  previously mentioned parameters 
constant. (See appendix A f o r  re la t ionship  of V, t / c ,  and A f o r  wedge 

These models have i n  common, aspect r a t i o s  of 1.07 

w i n g s .  ) 

Inspection of f igu re  4 shows t h a t  the  qua l i ty  of predict ion var ies  with 
the  model planform shape and t h e  aspect r a t i o .  
predict ions were possible  f o r  a l l  longi tudinal  parameters for t he  
rectangular wedge, whereas f igu re  4(b)  shows t h a t  a reduction of aspect r a t i o  
t o  0.35 resu l ted  i n  the  underprediction of both l i f t  and drag coef f ic ien ts  but 
t h a t  t he  predict ion of (L/D)" was good. This good predict ion w a s  due i n  
pa r t  t o  t he  use of f l a t - p l a t e  l i n e a r  theory t o  correct  for t i p  losses  on shapes 
with a f i n i t e  thickness r a t i o  and resu l ted  i n  the  overcorrection of both l i f t  
and drag f o r  pressure decreases behind the  t i p  Mach l i n e s .  The t i p  e f f e c t s  
on t h e  rectangular model were not la rge  f o r  t he  aspect r a t i o  of 1.07 a s  shown 
by the  L/D curve ( f i g .  )+(a)), calculated with no v e r t i c a l - t i p  skin f r i c t i o n  
or loss i n  normal force  due t o  Mach waves or ig ina t ing  a t  the  leading-edge t i p s .  
These t i p  losses  become s igni f icant  as the  aspect r a t i o  decreases. Figure 4(b)  
shows t h a t  the  estimated loss  i n  (L/D)max due t o  t i p  losses  a t  A = 0.35 i s  
about twice t h a t  f o r  A = 1.07. 

Figure 4(a)  shows t h a t  good 
A = 1.07 

Figures 4 ( c )  and (d )  show t h a t  good l i f t  and drag predict ions were 
obtained f o r  t h e  d e l t a  wing having A = 750 but t h a t  t he  (L/D)maX f o r  both 
delta-wing wedges (A = 75O and 850) w a s  overpredicted by about 10 percent, and 
t h a t  the  normal and l i f t  coef f ic ien ts  f o r  t he  d e l t a  wing having were 
a l s o  overpredicted. The i n a b i l i t y  t o  predict  (L/D),,, f o r  t he  delta-wing 
models i s  due primarily t o  the  low predict ion of axial force and drag coeff i -  
c ien ts  f o r  model 1 with A = 75O and, t he  overprediction of normal force  due 
t o  ear ly  leading-edge shock detachment on model 5 with I n  addi t ion 
crossflow, which w a s  not accounted f o r  i n  t h e  calculat ions,  and t r a n s i t i o n  which 
may have occurred a t  t h i s  Reynolds number ( r e f .  11) may be contributing fac tors .  

A = 850 

A = 850. 

The complete r e s u l t s  of t he  wind-tunnel t e s t  program covering the  models 
shown i n  f igures  1 and 2 were considered too  extensive t o  warrant reporting i n  
d e t a i l  i n  t h i s  paper and a r e  therefore  presented i n  tabulated form i n  t ab le  I. 
That portion of the  data  considered most rewarding, t h a t  is, 
rectangular w i n g s  and f o r  d e l t a  w i n g s  both upright and inverted, i s  presented 
and discussed subsequently. 

( L / D ) m S  f o r  
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Effect  of Reynolds Number 

The e f f ec t  of Reynolds number var ia t ion  on ( L / D ) m a  f o r  several  models 
having d i f fe ren t  thickness r a t i o s  and aspect r a t i o s  i s  presented i n  f igu re  5 
f o r  both rectangular and delta planform shapes. Losses i n  (L/D)- may be 
observed with decreasing Reynolds number f o r  a l l  configurations; t h e  losses  are 
l a rges t  f o r  t he  shapes having the  higher l eve l s  of 
t i v e l y  s m a l l  f o r  t he  configurations with lower eff ic iency.  

(L/D)- and are rela- 

Figure 5(a) a l s o  shows experimentally and theo re t i ca l ly  t h a t  increasing 
t h e  thickness r a t i o  of a configuration t o  provide usefu l  volume w i l l  r e s u l t  i n  
a loss  i n  (L/D)-. (See appendix A f o r  re la t ionship of volume and thickness 
r a t i o . )  The loss  of (L/D)max with a decrease i n  aspect r a t i o  for a nearly 
constant thickness ra t io ,  due t o  increasing t i p  losses  i s  evident from a com- 
parison of models 6 and 10. 

Figure 5(b)  shows (L/D)" values f o r  a series of d e l t a  w i n g s  through a 
range of Reynolds numbers f o r  wings with both flat-bottom and f l a t - top  orienta- 
t ions .  This f igure  shows t h e  overprediction of (L/D),= by theory, as d is -  
cussed i n  f igure  4, throughout t he  range of Reynolds numbers of t he  t e s t .  
predicted difference between t h e  (L/D)" values f o r  t he  flat-bottom and 
f l a t - t o p  or ien ta t ion  w a s  consis tent ly  l e s s  than t h a t  measured experimentally. 
Considerable s c a t t e r  may be noted i n  t h e  experimental data i n  t h i s  f igure,  due 
i n  pa r t  t o  t h e  random nature of e r ro r  always found i n  wind-tunnel measurements 
of (L/D),, 
Reynolds numbers. 
edge delta-wing wedge models, t h e  flat-bottom or ien ta t ion  gave t h e  higher l eve l s  
of (L/D)max 
occurs. 

The 

and i n  pa r t  t o  t r a n s i t i o n  t h a t  i s  t o  be expected a t  the  higher 
(See refs. 11 and 14.) I n  a l l  tes ts  of these sharp leading- 

as expected f o r  simple shapes where no favorable interference 

From these t rends it may be infer red  t h a t  high values of ( L / D ) m a  

Additional losses  i n  
(grea te r  than about 3 )  w i l l  be d i f f i c u l t  t o  a t t a i n  a t  low Reynolds numbers 
(,R < 0.1 x 106) on configurations having usefu l  volume. 
L/D may be incurred due t o  t r i m  control and base drag under f l i g h t  conditions. 

Effect of Volume Parameter on ( L / D ) m a  

Figure 6(a) presents a p lo t  of (L/D)" against  t h e  nondimensional volume 

parameter V2/3/% f o r  several  rectangular w i n g s  having aspect r a t i o s  of 0.35 
and about 1.0 a t  a constant Reynolds number of 1.5 X 106 (some data adjusted t o  
1.5 x 106) and Mach number of 6.9. These rectangular wings exhibi t  good agree- 
ment with theory and, as expected, a considerable loss  of 
increasing V2/3/Sp. 
V2/3/Sp > 0.1 

aspect r a t i o  a t  constant thickness r a t i o  with l i t t l e  loss  i n  

(L/D)max with 
It should be noted t h a t  i n  the  more useful  volume region 

some increases i n  volume r a t i o  may be gained by decreasing t h e  

( L / D ) m U .  



Conversely f o r  a constant V2/3/%, t h e  
t h e  aspect r a t i o .  
theory indicates  t h a t  increases i n  aspect r a t i o  may be expected t o  improve 
( L / D ) m a  values, but configurations of t h i s  nature may be of very l imited 
p r a c t i c a l  use. 

(L/D)” may be increased by decreasing 
A t  extremely low values of V2/3/S, and thickness ra t io ,  t h e  

Figure 6(b) presents data and theory for a s e r i e s  of roof d e l t a  wings f o r  
The data shown i n  t h i s  figure are f o r  flat-bottom R = 1.5 x 106 and M = 6.9. 

orientation; as discussed previously, t h e  f l a t - top  or ien ta t ion  gave lower 
values of (L/D)” f o r  a l l  tests. Agreement of experiment and theory i s  i n  
t r end  only with the  experimental data consis tent ly  being about 10-percent low. 
With respect t o  var ia t ions  of 
and volume ra t io ,  t h e  t rends are iden t i ca l  with those f o r  rectangular wings i n  

t h e  useful  volume region ( i . e . ,  V2l3/Sp > 0.1). For both rectangular and 

delta w i n g s  t h e  thickness r a t i o  appears t o  be t h e  dominate geometric parameter 
with sweep and/or t h e  aspect r a t i o  having a secondary e f f ec t .  

V2/’/SP < 0.1 t h e  d e l t a  wing theo re t i ca l  curves converge i n t o  a s ingle  l i n e  
which indicates  t h a t  var ia t ions  of sweep and/or aspect r a t i o  may be expected 
t o  contribute l i t t l e  change i n  

(L/D)” with aspect ra t io ,  thickness r a t io ,  

A t  l eve l s  of 

( L / D ) m a .  

Effect  of Thickness Ratio 

Figure 7 presents t h e  r e s u l t s  of tes ts  and calculat ions f o r  a se r i e s  of 
a t  a Reynolds number of 

For t h i s  

(See inse t  p l o t . )  

rectangular- and roof-delta-wedge wings with 
0.9 x 106 and 1.33 x lo6, respectively, and a,Mach number of  6.9. 
study t h e  thickness r a t i o  w a s  allowed t o  vary up t o  a m a x i m u m  of 0.3, and due 
t o  t h e  constant aspect r a t i o  used, t h e  V2l3/Sp var ied a l so .  

The loss i n  (L/D)m= 
of thickness r a t io s  and graphical ly  i l l u s t r a t e s  t he  serious losses  t h a t  occur 
due t o  increasing volume by increasing 
i s  a nine-fold increase i n  minimum drag and l e s s  than a three-fold increase i n  
the  slope of t he  normal-force curve a s  t / c  va r i e s  from 0 t o  0.3. The impor- 
tance of minimum drag i n  the attainment of (L/D),, should not be underesti- 
mated. Theoretical  methods based on l i n e a r  theory have shown t h a t  
can be expressed i n  terms of minimum drag and l i f t - cu rve  slope ( r e f .  11). 
thermore, reference 21  shows t h a t  for symmetrical configurations i n  Newtonian 
flow t h a t  t he  l i f t -curve  slope can be expressed i n  terms of minimum drag. It 
may therefore  be inferred from both experimental and theo re t i ca l  s tudies  f o r  
symmetrical shapes a t  hypersonic speeds t h a t  minimum drag i s  of primary impor- 
tance i n  the  attainment of 

A = 1 

amounts t o  approximately 50 percent within t h i s  range 

The major reason f o r  t h i s  l o s s  t / c .  

(L/D)max 
Fur- 

(L/D),,. 

It has of ten been suspected t h a t  f i l l i n g  i n  the  shadow region would have 
l i t t l e  or no e f f ec t  on L/D. Since the  angle of a t tack  at  which (L/D),,, w a s  
measured f o r  these configurations w a s  i n  excess of t h a t  needed t o  sh ie ld  t h e  
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t o t a l  body volume (except f o r  t h e  model with 
region, t h i s  e f f ec t  can be examined. To show t h e  magnitude of t h i s  effect ,  a 
curve showing L/D 
a t tack  of t h e  lower surface of each model at 
The difference between t h i s  curve and t h e  one labeled "with t i p  correction" 
indicates  t h e  penalty i n  L/D due t o  f i l l i n g  i n  the  shadow region. This loss  
i s  s igni f icant  and amounts t o  as much as 10 percent ( f o r  t h e  models having the  
l a r g e r  t / c  values).  

t / c  = 0.3) within the  shadow 

of a f la t  p l a t e  at  an angle of a t tack  equal t o  t h e  angle of 
(L/D)- i s  included i n  f igure  7. 

Effect  of Aspect Ratio 

The e f f ec t  of aspect r a t i o  on (L/D)- of both rectangular and d e l t a  
planform wedges has been discussed b r i e f l y  i n  t h e  presentation of f igures  6(a) 
and (b).  A more de t a i l ed  study i n  which aspect r a t i o  w a s  var ied f o r  a constant 

V2/3/Sp r a t i o  i s  presented i n  f igure  8 f o r  constant Reynolds numbers, based on 

both the  root chord and on t h e  square root of t h e  planform area. This l a t te r  
case i s  included t o  show t h e  behavior when planform area i s  held constant. 
Experimental data i n  both f igures  8(a) and 8(b)  show peak values of (L/D)max 
a t  A = 0.3 t o  0.4; both the  peak values and t h e  aspect r a t i o  at  which they 
occur are dependent on Reynolds number, thus indicat ing optimum shapes f o r  t he  
f ixed V2/3/Sp r a t i o  of 0.20. Curves shown i n  f igure  8(a) with no correction 
f o r  t i p  losses  show no optimum, but with the  addition of t he  t i p  l o s s  due t o  
skin f r i c t i o n  on t h e  v e r t i c a l  s ide areas of t h e  rectangular wings an optimum 
i s  approached t h a t  does not compare with t h e  measured data .  Nl correction 
f o r  t i p  losses  due t o  changes i n  the  l o c a l  pressure behind t h e  Mach l i n e s  
emanating from t h e  leading-edge t i p s  and f o r  skin f r i c t i o n  along t h e  v e r t i c a l  
side areas  w a s  applied t o  the  curves shown i n  f igure  8 (b )  and good predictions 
of (L/D),, resulted.  A s  t h e  losses  of  normal force due t o  l o c a l  pressure 
var ia t ion  a r e  a function of both aspect r a t i o  and Mach number, an in se t  p lo t  
i s  provided t o  show t h e i r  magnitude. The s m a l l  sketches across t h e  bottom of 
t h e  f igu re  show the  a reas  a f fec ted  f o r  various aspect r a t i o s  at t h e  stream Mach 
number of 6.9. 
with aspect r a t i o  i n  order t h a t  V2/3/Sp be constant. For t he  case of con- 
s t an t  planform area ( R  = 0.61 x 1061, the  optimum performance i s  reached when 
t h e  losses  due t o  t i p  e f f ec t s  balance the  gains made by decreasing t h e  thick- 
ness r a t i o  and aspect ra t io ,  which increases t h e  chord and reduces t h e  skin- 
f r i c t i o n  coeff ic ient .  For t h e  constant root-chord case ( R  = 0.64 X lo6)  t h e  
gains of with decreasing aspect r a t i o  may be a t t r i bu ted  so le ly  t o  
t h e  accompanying decrease i n  thickness ra t io ,  which are balanced by the  
increasing t i p  losses .  The optimum ( L / D ) m m  occurred a t  d i f f e ren t  aspect 
r a t i o s  depending on the flow conditions and it would be expected t h a t  f o r  other  
c lasses  of configurations s i m i l a r  optimum would occur. 

During t h i s  study it w a s  necessary t o  vary the  thickness r a t i o  

(L/D),, 
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Summary of Theoretical  W i n g  Character is t ics  

and O p t  im Configurations 

It has been shown t h a t  ( L / D ) m a  f o r  rectangular w i n g s  can be calculated 
with good accuracy throughout a range of  Reynolds numbers and f o r  various 
aspect r a t i o s  and thickness ra t ios ,  and t h a t  t h e  t rends of 
w i n g s  may be calculated, but t h e  calculated values of 
mately 10-percent higher than f o r  experimental data .  
ber, calculations showing t h e  overa l l  re la t ionship  of aspect r a t i o  o r  sweep, 
thickness ra t io ,  volume ra t io ,  and m a x i m u m  l i f t - d r a g  r a t i o  a re  presented i n  
f igure  9 f o r  a wide range of rectangular and d e l t a  wings. This f igure  shows 
t h e  predominate e f f ec t  of thickness r a t i o  i n  t h e  attainment of high 
and the  secondary e f f ec t  of aspect r a t i o  except a t  very low thickness r a t i o s  
and aspect r a t io s .  Also shown i s  the  reduction i n  (L/D)” as v2/J/sp 

increases as discussed previously. As t h e  aspect r a t i o  i s  reduced below about 
1 o r  t h e  sweep angle increased beyond about 800 t h e  curves of constant 

take a decided tu rn  toward t h e  region of lower thickness r a t i o .  This increased 
curvature of t h e  

constant V2/3/Sp make possible t h e  determination of t he  optimum configuration 
with regard t o  (L/D)” f o r  these geometric parameters. This optimum occurs 

a t  t he  point of tangency between t h e  curves of (L/D)max and those of V2/3/Sp 

which i s  shown by a shaded band. An optimum configuration having high V2/’/% 
may be seen t o  have a low aspect r a t i o  o r  high sweep and a r e l a t ive ly  la rge  
thickness r a t i o  and low (L/D)max, whereas a high (L/D),, shape i s  charac- 
t e r i zed  by higher aspect r a t i o  or lower sweep and lower thickness and volume 
r a t i o s .  The curves of f igure  9 therefore  represent t he  optimized solut ion f o r  
rectangular and d e l t a  planform w i n g s  with the  Mach number, Reynolds number, and 
volume parameter as the  r e s t r i c t i v e  conditions. Other r e s t r i c t i v e  conditions, 
of course, can r e s u l t  i n  d i f f e ren t  optimum shapes. The difference due t o  a 
decrease i n  Reynolds number from 1.5 x 10 6 t o  0.64 x 1 0  6 on rectangular wings 

f o r  a constant V2/3/Sp = 0.2 may be seen by comparing f igures  8 (b )  and 9(a) .  
If V2/3/wetted area i s  used i n  place of V2/31/Sp, however, t h e  difference i n  
optimum configurations i s  not great .  

rectangular w i n g  using V2/3/wetted area has A = 0.53 and t / c  = 0.85 
whereas using V2l3/Sp r e s u l t s  i n  a wing having A = 0.47 and t / c  = 0.8. 

(L/D)ma f o r  d e l t a  
(L/D)” are approxi- 

For a given Reynolds num- 

(L/D)max 

(L/D)m, 

(L/D)ma curves combined with t h e  superimposed l i n e s  of 

/ 

For example, t h e  optimum (L/D)max = 6 

Comparison of Delta and Rectangular Planform Wedge Wings 

To t h i s  point t h e  discussion has dea l t  with d e l t a  and rectangular wings 
as separate shapes; f i gu re  10 compares t h e  two wings based on a common Reynolds 

number, constant aspect ra t ios ,  and constant V2/3/Sp r a t io s .  Interpolated 
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da ta  from f igure  5 were used t o  compile t h i s  p lo t .  For t h e  case where the  
Reynolds number f o r  both wings i s  based on a constant root chord 
( R  = 0.74 x 106), t h e  rectangular wings exhibit  t he  highest  
d e l t a  w i n g s ,  t he  lowest because of the  high viscous losses  i n  the  t i p  region 
of t h e  de l t a s  where t h e  l o c a l  chord i s  small and the  l o c a l  Reynolds numbers are 
l o w .  Reference 19 indicates  t h a t  f o r  equivalent viscous e f f ec t s  on f l a t -p l a t e  
delta and rectangular wings t h a t  t he  root-chord Reynolds number on the  d e l t a  
wing should be l a rge r  by f ac to r  of 1.777 than the  Reynolds number on t h e  rec- 
tangular w i n g .  D a t a  are shown f o r  t h i s  case i n  f igure  10 f o r  R = 1.32 x 106 
based on t h i s  r a t i o  and it may be seen t h a t  t he  (L/D)" values f o r  t h e  d e l t a  
wings a re  s l i g h t l y  higher than those f o r  t h e  rectangular w i n g s .  This condition 
might be ant ic ipated as the  t i p  losses  on the  rectangles would tend t o  reduce 
the  (L/D)" values somewhat. If t h e  configurations under consideration a re  
assumed t o  have equal planform areas  and t h e  same average tes t  Reynolds number, 
t h e  d e l t a  wings must operate at  a Reynolds number of 1.48 x 106 t o  compare 
with t h e  rectangular w i n g s  operating a t  0.74 x 106. 
data  i n  f igure  10 show t h e  d e l t a  configurations t o  be superior t o  the  rectan- 
gular  shapes. 

(L/D)" and t h e  

On t h i s  bas i s  a l so  t h e  

Correlation of M a x i m  Lift-Drag Ratios 

In  the  discussion e n t i t l e d  "Theory" it was pointed out t h a t  the  calculated 
(L/D)mx 
using the  l inear ized  theory curve (cot  a) /2 .  A fu ther  analysis  shows t h a t  i f  
an average angle of a t tack  i s  used, t h a t  i s ,  the  angle measured from the  re la -  
t i v e  wind t o  t h e  model mean l i n e ,  (L/D)aax of  configurations of various plan- 
forms a t  various Reynolds numbers having f i n i t e  thickness can a l so  be correlated 
by using functions of the  cot a curve. The r e s u l t s  of t h i s  investigation, 
both theo re t i ca l  and experimental, a r e  shown i n  f igure  11. This figure shows 
t h a t  near ly  a l l  values of 

the  curve, thus establ ishing an upper l i m i t  of (L/D)max f o r  simple 

wedge configurations a t  a hypersonic Mach number. 

of zero-thickness f l a t  p l a t e s  could be approximated very closely by 

(L/D)max whether measured o r  calculated f a l l  beneath 
C o t  aav 

CONCLUSIONS 

Analysis of experimental data using the  shock-expansion theory on a var ie ty  
of rectangular and d e l t a  planform w i n g s  at  a Mach number of 6.9 and a range of 

6 6 Reynolds numbers from 0.35 x 10 t o  4 .1  x 10 leads t o  t h e  following 
conclusions. 

1. Good predictions of m a x i m u m  l i f t -d rag  r a t i o s  (L/D)- were possible 
on t h e  rectangular planform w i n g s ,  whereas the  
d ic ted  by about 10 percent on t h e  d e l t a  planform wings. 

(L/D)max values were overpre- 
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2. A severe decay of maxim lift-drag r a t i o  occurs with decreasing 
Reynolds numbers f o r  a l l  configurations. It may be infer red  t h a t  high values 
of 
numbers (Reynolds numbers l e s s  than 0.1 X 106) on configurations having usefu l  
volume. 

(L/D),= (grea te r  than about 3 )  w i l l  be d i f f i c u l t  t o  a t t a i n  a t  low Reynolds 

3 .  The flat-bottom-orientated d e l t a  models exhibited t h e  superior  m a x i m u m  
l i f t - d r a g  r a t i o s  as predicted by theory on simple configurations where no favor- 
ab le  interference e f f ec t s  occur. 

4. A t  hypersonic speed where t i p  lo s ses  are r e l a t i v e l y  s m a l l ,  maximum lift- 
drag r a t i o  appears t o  be primarily a function of thickness r a t i o  and secondarily 
a function of aspect r a t i o .  This i s  due t o  a disproportionate increase i n  mini- 
mum drag i n  r e l a t ion  t o  l i f t - cu rve  slope i r respec t ive  of planform geometry. The 
determination of optimum shapes i s  possible  by construction of a composite p l o t  
of aspect r a t i o ,  thickness r a t i o ,  volume2/3-planform-area r a t io ,  and maximum 
l i f t - cu rve  slope. 

5 .  A t  the  hypersonic Mach number of 6.9 the  curve of one-half t he  cotangent 
of the  average angle of a t tack ,  t h a t  i s ,  t he  angle measured from the  r e l a t ive  
wind t o  the  model mean l i n e ,  forms an upper boundary f o r  both calculated and 
experimental values of maximum l i f t - d r a g  r a t i o  f o r  rectangular and d e l t a  wedges. 
"his l imi t ing  boundary may be readi ly  derived by using l inear ized  theory. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Stat ion,  Hampton, V a . ,  May 3, 1-96?. 
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A P P m I X  A 

GEOMETRY OF ~CTA.NGULAR AND DELTA WF=DGE WINGS 

I n  any discussion concerning the  useful  volume of an aerodynamic shape it 

The r e l a t i v e l y  widespread use of the  nondimensional r a t i o  of 
i s  appropriate t o  see how t h e  volume var ies  with changes i n  the  configuration 
geometry. 
volume2/3 t o  the  planform area as an eff ic iency cor re la t ing  parameter fu r the r  
complicates t he  i ssue  and makes separation of t he  e f f e c t s  of shape var iables  
d i f f i c u l t .  
volume2/3/area r a t i o  
delta-wedge wings. 

with thickness r a t i o  but decreases with increasing aspect r a t i o .  

Figures 12(a)  and (b)  presents the  re la t ionship  of volume and 

The volume increases l i n e  r l y  with e i t h e r  an increase i n  
t o  thickness r a t i o  and aspect r a t i o  f o r  rectangular- and 

thickness r a t i o  or aspect ra t io ;  t he  volume 2731 area  ra t io ,  however increases 

For d e l t a  wings the  aspect r a t i o  may be expressed i n  terms of sweep angle 
which r e s u l t s  i n  A = 4 cot A. A plo t  of t h i s  r e l a t i o n  i s  presented i n  f i g -  
ure  12(c)  and shows t h a t  the  aspect r a t i o  f o r  d e l t a  wings i s  r e l a t ive ly  insen- 
s i t i v e  t o  sweep angle at the  la rge  values of sweep under consideration for 
hypersonic configurations, therefore  yielding only s m a l l  d i f ference i n  aspect 
r a t i o  f o r  s izable  var ia t ions  of sweep angle. 



APPENDIX B 

LIFT-DRAG RATIO AND ANGLE OF ATTACK 

The majority of wind tunnels obtain l i f t -d rag  r a t i o s  on a model by meas- 
ur ing the  normal and a x i a l  forces  through an angle-of-attack range and calcu- 
lating t h e  l i f t  and drag parameters from t h e  t e s t  r e s u l t s .  

The s e n s i t i v i t y  of l i f t -d rag  r a t i o  t o  any deviation from the  assumed angle 

This geo- 
of a t tack  i s  appreciable, and a t  t h e  higher values of 
e r r o r  may occur f o r  a r e l a t ive ly  small var ia t ion  i n  angle of a t tack.  
metric problem can be shown readi ly  through the  use of t h e  equations involving 
l i f t ,  drag, normal and axial forces, and angle of a t t ack  which when combined 
result i n  the  following relat ion:  

L/D a considerable 

which shows t h a t  the  l i f t - d r a g  r a t i o  i s  dependent only on t h e  normal-to-axial- 
force r a t i o  and the  angle of a t tack .  A p lo t  of t h i s  re la t ionship i s  presented 
i n  f igure  13 where it may be seen t h a t  t h e  s e n s i t i v i t y  of 
i n  assumed angle of a t t ack  var ies  not only with t h e  l e v e l  of 
with t h e  angle-of-attack region i n  question. 
l e v e l  of L/D t h e  more serious the  deviation of t h e  angle of a t tack .  For 
example, a t  
L/D; a t  however, an e r r o r  of +lo can result i n  nearly k1.0 e r ro r  
i n  L/D. 

L/D t o  var ia t ion  
L/D but also 

Generally however t h e  higher t he  

an e r ro r  of k1° r e s u l t s  i n  only about kO.1 e r r o r  i n  L/D = 2.0 
L/D = 7 
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* 1513 
0.0015 
.0016 
.0018 

. 0001 - .0002 
- .0006 - .0008 
- . ooog 

R = 2.81 X lo6 

0.1873 - 1554 . ll73 
.a91 
0567 
.0242 

- . ooll 
- .0322 
-.e94 
- .0974 

R = 3  

CN 

0.1520 . n91 
.0842 
.05= . ou9 - .m78 - a 0347 - .0620 - .a974 

1.88 x lo6 

I ~ -cA 
0.0026 

. O O B  

.0028 
0037 
.0&9 
.0062 
0079 

.009 . on9 

1 
0.0009 

.0003 

- . 0001 - .0003 
- .0006 - .0006 

0.0022 
* 0035 
.0030 
- 0035 
.0041 
.0052 
.0066 
.0ca2 
.098 
.0136 1 0.0008 . ooog 

.0006 

.0006 

.m06 

.0003 

. 0001 . 0000 
- . 0001 
- . 00% 

, 



0.1677 
-1337 
.io03 
* On5 
.&46 
.0198 - .m38 - -0239 - . &87 - .07& 

~ 

0.005 
.0030 
.0036 
.0&3 - 0053 
. o m  
.oo* 
.0078 
.om5 
.0103 

TABLE! I.- T A B W I O N  OF DATA - Continued 

(b) Model 2 

R = 1.27 X lo6 R = 0.72 X lo6 

CA 

0.0037 
.0@1 
.w8 
.oo61 
.a9 
.0086 
. o m  
.0086 
.0107 
.0126 

- 

% 

0.0004 
.om2 
.0003 

- .0002 - .0002 - .OO% - . 0006 - .0006 - .OO& 
-.0006 

I cm CN 

0.1690 
-1349 
.lo60 
.0752 
.at72 
.0245 - .0023 - .0264 - .&60 

~ ~ 

-. 0790 
~- ~ 

CA 

0.0031. 
.0036 
.0&5 
.0@2 - 0%3 
.0065 
.a172 
* 0075 
.0&7 . Olog 

~~ 

CN 

14.00 
12.00 
10.00 
8.00 
6.00 
4.00 
2.00 . 00 
-2.00 
-5.00 

0.1676 
-1366 
.io76 
.0742 
.&65 
.0224 

- .0026 - .051 - .&78 
- - 0795 

14.00 
12.00 
10.00 
8.00 
6.00 
4.00 
2.00 . 00 
-2.00 
-5.00 

0.0013 
.mi7 
.0008 
.0003 
.0003 - .0007 
.0003 - . ooog - .0007 - .0007 

I R=2  x 106 

CA 

0.0015 

.a23 

.0028 - 0037 . 0050 

.0063 

.0070 

.0&2 

.0109 

.0018 

~~ 

- c, 
0.0001 - . 0001 . 0001 
.0002 - .0002 - . 0001 - .0007 - . 00% 

-.00& - .0006 

Cm 
~_.__ ~ 

0.0003 
.0002 - . 0001 . 0000 . 0000 

- * 0002 - .oO02 -. ooog - .a312 - .OO@ 

a, deg 

14.00 
12.00 
10.00 

4.00 
2.00 

-2.00 
-5.00 

0.1769 
.14U . u27 
.0807 
.@lo 
.0256 - .0017 

- .os6 
- . 0470 - .moo 

14.00 
12.00 
10.00 
8.00 
6.00 
4.00 
2.00 . 00 
-2.00 
-4.00 

I x 106 
-. - - 

CA 

0.0008 
. 0010 
.0014 
.002l 
.0030 
.0042 - OW5 
.0064 
.0080 . ow9 

R = 4.13 
.~ 

0.1761 

-. 0052 - -0266 -. 0520 - .0736 

1 %  a, deg 

14.00 
12.00 
10.00 

4.00 
2.00 

-2.00 
-4.00 

~. 

-0. 0004 - .0003 - . 00% 
- . 0004 - .OO% - .ooo6 - .0007 - .0008 - . ooog - . 0010 
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TABLE I.- TABULATION OF DATA - C o n t i n u e d  

0.1348 
.0613 
.0246 

- .0103 - -0392 
- .0665 
- .ow1 

( c )  Model 3 

0.0044 
* 0075 . 0 0 9  
.0124 
.0151 
.OB0 
0199 

a, deg 

14.00 
12.00 
10.00 
8.00 
6.00 
4.00 
2.00 . 00 

-2.00 
-5.00 

deg 

14.00 
12.00 
10.00 
8.00 
6.00 
4.00 
2.00 . 00 
-2.00 
-4.00 

R = 0.72 X lo6 I 
CN 

0.1p 
.13& 
* 0933 - 0596 
.0301 - .0007 

- 0623 - .0896 - .1316 

~ 

-so357 

~~ 

R = 1.39 

0.1691 

.@76 

-1295 
* 0932 

.0242 - .0096 - -0381 
- .lo02 
- .1295 
- .0654 

CA 

0-0095 
.0103 
. o u 7  
.0140 
0159 
.0184 
.0206 
.0224 - 057 
.03u 

c, 
0.ool.l 
.0013 . 0008 
.0011 
.OO@ 
.0004 
.0002 - .0003 - .0006 - . ooog 

x 106 

CA I '& 
O.OO@ . 0001 

.0006 

.0003 

.0002 
.0172 .0002 
LO205 . 0000 
.0244 - .0002 
.0286 - .0002 

a, deg 

14.00 
12.00 
10.00 
8.00 
6.00 
4.00 
2.00 . 00 
-2.00 
-5.00 

deg 

14.00 
12.00 
10.00 
8.00 
6.00 
4.00 
2.00 . 00 

-2.00 

R = 1.36 x lo6 

% 

0.1735 
1315 

e 0 9 4 6  
.0580 
- 0277 - .0018 - -0372 
-.c643 
- -0933 - -1359 

~ 

12.00 
8.00 
6.00 
4.00 
2.00 . 00 
-2.00 

CA 

R = 2.64 X lo6 

0.0059 
.0067 
.0082 
* 0099 
.0123 
.0144 
.0170 
.0202 
* 0237 
.0302 

CN 

0 - 1797 - 1378 
.@86 
.0624 
.0262 

- -0079 
- .@75 

-0.0002 

. 0000 
- . 0001 
- .0003 - -0004 
- .0007 

CA 

0.0038 
.0w2 
.0064 
.0082 
.0104 
.0132 
0159 
.0189 
.0227 

c, 
-0.0001 . 0005 

* 0002 
- .0002 
.0003 . 0001 . 0000 - .0003 - . 0006 

- .0003 

- .0006 
- .0003 
- . 0001 
- .0002 - .0002 
- .0003 - .0003 



I cm 

CN 

0.1632 
.la8 .w= 
.0587 
* 0303 
.0036 - .0261 - .&96 

- a  On4 - .io89 

CA 

0.0033 
.0041 
.0@4 
.0072 - OW3 
.Oll4 
.0126 
.0146 
.01@ 
.0240 

TABLE I.- TABULATION OF DATA - Continued 

(a) Model 4 

R = 0.71 x lo6 R = 0.72 x 106 

a, deg c, CA c, a, deg 

14.00 
12.00 
10.00 

4.00 
2.00 

-2.00 

14.00 
12.00 
10.00 
8.00 
6.00 
4.00 
2.00 . 00 
-2.00 
-4.00 

0.0064 
-0075 .ow0 
.0107 
* 0133 
.015 0 
.0163 
.0189 
.OU4 
.Oa4 

0.0006 
-.0008 . 0000 - .0002 - .0002 . o o q  . 0001 
.oow - .om7 
.0005 

0.1560 
.u78 
.a50 
.q48 
.0283 
.0012 - .0251 

- .&65 - .0686 

0.0071 
. m 5  
.oogg . oll1 
.0131 _. 0146 
0 0159 
.0171 
.0202 

0.0003 . 0 0 6  
.0003 - .0002 
.0002 . 0000 

- .0003 - .0003 - .om9 

- .0002 - .0246 - - 907 -. 0756 

L I R = 1.5 X lo6 

CN CA 

0.1579 0.0049 

.os2 .0103 . 00- .015 
-a 0245 .0141 - .&62 .0162 
-.Os32 .0188 - .lo61 .0241 

R = 1.40 X lo6 

CA 

0.1551 0.0037 

.0066 - 0079 - 0239 .w7 - .0031 . ou9 
- .0263 - 0133 -. 0474 - 0153 

Cm a, deg 

14.00 
12.00 
10.00 

2.00 

-2.00 
-5.00 

a, deg 

14.00 
12.00 
10.00 

6.00 
4.00 

-0.0001 . 0000 . 0004 
.0002 - .0004 . 0000 
.mol - . 0001 

0.0003 
.0002 
.0002 . 0001 - .0002 
.mol - . 0001 - . 0001 
. 0000 - .0002 

2.00 1 .oo 

L R = 3.98 X lo6 

a, deg 

12.00 
10.00 

4.00 
2.00 

-2.00 
-5.00 

a, deg 

14.00 
12.00 
10.00 

4.00 
2.00 

-2.00 
-4.00 

-0.00% - .0003 - -0002 . 0000 . 0001 - . 0001 . 0000 . 0000 . 0000 . 0004 

0.1650 
.1285 
.0928 
0577 
.0286 
. o o u  

- .os2 - .0494 
- * 0757 
-.(a98 

0.0021 
.0032 
.0&5 
.0&2 
. m 3  
.0103 
.0122 
.0140 
. O l E  
.0a2 

-0.0013 
- . 0010 - .0007 
- . OO@ - . 00% 
- . 0004 
- . 0004 - . 0004 
- .0003 - .0002 



.~ 

CN CA 

0.0920 0.0006 
.0624 .0014 
* 0378 .0024 
.0174 - 0035 . 0000 .0046 

' -.0156 .0046 - .0312 .0062 - . 0494 .0078 

_ _  
c, 

-0.0013 - . ooll  - . ooog - .0007 - .0006 
- . 0005 
- . 0006 -. 0008 

TABm I.- TABuLllTION OF DA!I?A - Continued 

(e) Model 5 

R = 0.66 X lo6 I R = 1.38 X lo6 

CN CA CN CA c, 

14.00 
12.00 
10.00 
8.00 
6.00 
4.00 
2.00 . 00 

-2.00 
- 

~ 

0.0060 
.0054 
* 0079 
.065  
.0092 . Oogl 
.ow0 
.0108 
.om3 

14.00 
12.00 
10.00 
8.00 
6.00 
4.00 
2.00 . 00 

-2.00 
-5.00 

-0.0008 - . ooog 
-.00og 
-.om3 
- .0003 - .0003 . 0000 - .0006 - . 0010 . 0001 

0.0004 - .oos  - . 0012 - .0016 
- .m33 . 0001 

R = 2.67 X lo6 1 R = 1.40 x lo6 

c,rcA i 
14.00 
12.00 
10.00 
8.00 
6.00 
4.00 
2.00 . 00 

-4.00 

0.1520 
.ll45 
,0860 
0584 - 0355 
0139 - .0008 - .0164 - -0469 

0.0015 
. O O S  
.0030 
.0036 
.0042 
. o m  
0059 

.0&6 

.0086 

14.00 
12.00 
10.00 
8.00 
6.00 
4.00 
2.00 . 00 

-2.00 
-5.00 

0.1554 
.1278 
0964 

.0662 

.0412 

.0216 

.0018 - -0145 - . o s 1  - -0548 

0.0004 
.0015 
.0023 
.00s 
.0036 
.0&2 
.0046 
.0&6 . 0064 
. m 5  

.O.OO@ 
- . 0008 
- .0004 
- .0002 - . 0005 - .0007 - .0004 - .GO02 - .0007 - .0003 

-0.0002 . OO@ - .0016 
.0008 - .0002 

- .GO14 . 0001 
.GOO1 
.om1 
1 

a, de8 

10.00 
8.00 
6.00 
4.00 
2.00 . 00 

-2.00 
-4.00 
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CA c, 

TABLE I.- TABULATION OF DATA - Continued 

(f) Model 6 

R = 0.99 X lo6 R = 0.68 x 106 

CA 

0.0028 
- 0035 
.oo@ . 0043 
.0051 
.0066 
.om2 
.0106 
.01- 

Cn c, 
0.002l 

.0012 

. ool l  . ooll  
- ,0010 . 0005 

.0002 

.om2 

.0013 

a, deg 

14.00 
12.00 
10.00 

2.00 

CN 
~ 

0.1874 
.1476 
1079 

.@go 

.0726 

.0384 

. O l d  - -0197 
- .0518 

0 - 1535 . l l40 
.0768 
.&33 
.0130 

0.0010 
.0023 
.0038 
.0056 - 0079 

0.0007 
.0002 
. 0001 
.0004 

- * 0002 

12.00 
10.00 
8.00 
6.00 
4.00 

R = 0.70 x lo6 

CN I cm a, deg 

18.00 
16.00 

12.00 
10.00 

2.00 

CA 

.0031 

.0032 

.0036 

.O@O 

.0058 

.0070 

. o m  

.oil5 

.0141 

0.0022 0.0042 

.001g 

.0015 

.0012 

- .0027 

0.2941 
.24@ 
.1962 
.1514 
. u 0 7  
0797 

. a 1 6  
. O l l 2  

-.ow 
- .&80 

( h )  Model 8 

R = 0.66 X lo6 R = 1.47 x lo6 

CA 

-0.0002 
.0018 - 0039 - 0055 
.Om5 
.0122 
.02a7 
. a 5 9  

CN c, 
0.0028 

.0018 . o o u  

.0005 

.0007 . 0004 

.0011 

.a132 

CN CA s, 

.0017 
0.0020 

. 0011 

.0012 . 0010 

.0011 

.0013 

20.00 
18.00 
16.00 
14.00 
12.00 
10.00 
4.00 
.oo 

0.2702 . a 7 0  
.1666 
.1151 
.0724 
.0245 

- .0193 

0.000g 
.0018 
.0034 
.0060 
.0m9 
.0135 
.01g0 

18.00 
16.00 
14.00 
12.00 
10.00 

6.00 
8.00 

1 
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TABLE I.- TABULdWION OF DATA - Continued 

(i) Model 9 

R = 0.63 x lo6 R = 0.72 x lo6 

a, aeg 

20.00 
18.00 
16.00 
14.00 
12.00 
10.00 
8.00 
6.00 
4.00 
2.00 . 00 

CN 

20.00 
18.00 
16.00 
14.00 
12.00 
10.00 
8.00 
4.00 . 00 

0.3145 
.2588 
.2060 - 1657 
.u88 
.0782 
. o s 8  

- * 0529 
-.1442 

0.0030 
.0@2 
.0070 . 0081 
.0114 
.0150 
.0183 
.0296 
0457 

0.0035 
.a132 - 0033 
.001g . 001.6 
.0018 
.0012 
.0017 
.oo$ 

0.2986 

.2013 
-1555 . log9 
-0672 
.OB0 

- .016a 
- .e594 - .io43 

.2489 

- .1472 

0.0001 0.0032 
-0016 .0023 
.0034 .0020 
.0052 .0013 
. a d o  . 0010 
.0114 .0007 
.0158 . 0005 
.0u3 .0m7 
.0282 .0007 
.0357 . 0008 
.&47 .0017 

( j) Model 10 

R = 0.73 X lo6 

0.1788 0.0042 
0039 - 0053 

.0710 

.0182 - .0172 

.0064 

- . dI.14 * 0139 

Cm CA Cm 

0.0053 
.0045 
.0039 
.0029 
.m25 
.0013 
.m07 
.oooo 

14.00 
12.00 
10.00 
9.00 
8.00 
6.00 
4.00 
2.00 . 00 

0.0062 
. 0 6 2  
.0&5 
.0040 
.0040 
.0027 
.0017 . 0008 - .0005 

14.00 
12  * 00 
10.00 
8,oo 
6.00 
4.00 
2.00 . 00 

~ 

0.1766 - 1353 
* 0995 
.0664 
.03& - 0095 - -0197 - -0463 

0.0011 
.0016 
.0024 . 0029 
.0040 
-0057 
.0078 
* 0099 

k) Model ll 

R = 0.64 x lo6 R = 1.36 x lo6 

1 a, deg 

14.00 
12.00 
10.00 
8.00 
7.00 
6.00 
4.00 
2.00 . 00 

CN Cm CA 

0.0078 

.0087 

.0078 

.0078 - . OW8 

. o m  . On6 

- 0077 

- 0073 

%I 

0.0084 
.0065 
* 0057 
0053 

,0048 
.oat1 
.0027 
.0007 - . ooog 

a, 6% 

14.00 
12.00 
7.00 
6.00 
4.00 
2.00 . 00 

0.1604 
1315 . og93 

.0671 
-0577 . 0411 
.0182 

- -0033 
- .os0 

0.1626 
.1294 
-057-7 
.0426 
.0192 - .0031 - .0245 

0.0039 
.0040 
.0042 
.0ca4 
.0@6 
.0062 
.eon 

0.0060 - 0055 . 0034 
.0032 
.0018 
.0002 

-.00l2 

23 
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I ... .- 

a, deg CN 

14.00 0.1767 
12.00 .1%1 
10.00 .io13 
8.00 .0656 
6.00 * 0370 
4.00 .0&7 
2.00 - .0191 . 00 -.a40 

CA Cm 

0.0013 0.0042 
.0038 .0032 . 0040 .0031 
. W 4  .0016 
-0057 .0018 
.0076 .0012 
* 0095 . 0004 
.oil9 - . o m  

a, deg 

14.00 
12.00 
10.00 
8.00 
6.00 
4.00 
2.00 

.00 

CN CA c, 

* 1367 .0&7 .ooe 
.lo02 .W8 .0020 
.0660 0053 .0016 
-0382 . 6 3  .0013 . oogo .oca2 . o c a  - .0181 . 0100 - .mol - . 0456 .0124 - .0007 

0.1760 0.0008 0.0037 

CA c, 

TABLE I.- TABULATION OF DATA - Continued 

( 2) Model 12 

(m) Model 13 

R = 0.61 X lo6 R = 0.67 x lo6 

CN CA Cm CA Cm a, deg 

18.00 
16.00 
14.00 
12.00 
10.00 
8.00 
6.00 
4.00 
2.00 

a, deg 

18.00 
16.00 
14.00 
12.00 
10.00 
8.00 
6.00 
4.00 
2.00 . 00 

0.2922 
.2412 
.1902 
.1465 
.io50 
-0667 - 0 5 5  - .E81 - .0394 

0.0005 
.0028 
.0040 
.0049 
.0069 
.ow1 . 0115 
.0145 
.0187 

0.0052 
.0032 
.0028 
.0020 
.0016 
.0019 
* 0004 

- . 0030 .0020 

0.2811 - 2239 
* 1799 
* 1383 - 0994 
.0638 
. o s 2  - .0092 

-.04+6 - -0796 

0.0018 
. O O S  
.0042 
0055 

.ma 

.0&7 . o l l l  

.0136 
* 0179 
.0231 

0.0040 
.oog 
. O O S  . 00% 
.0019 
.0015 
.0012 . 0004 
.oo& . 0001 

(n)  Model 14 

R = 0.61 X lo6 R = 0.65 x lo6 

a, deg 

0.0036 

.0103 

.Ol$ 

.0174 

.0226 

. o s 1  

.0@6 

.0074 

-0.0008 - .0002 - .0014 - .mi6 
- .mi7 - .0003 - ,0001 
-.&l 

18.00 
16.00 
14.00 
12.00 
10.00 
8.00 
6.00 
4.00 

0.0028 
.0&5 
.0066 
-0092 
.0121 
.0162 
.02@ 
.0282 

0.0030 - .mi9 - .0003 - . 0001 
- -0014 
- .0016 

- .0102 
.0007 

* 2399 
.1826 

10.00 

- .0015 
4.00 - -0390 
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TABLE I.- TABULATTON OF DATA - C o n c l u d e d  

(0) M o d e l  15 

a, deg 

21.00 
19.00 
16.00 
14.00 
12.00 
10.00 
8.00 
4.00 . 00 

a, del3 

20.00 
18.00 
16.00 
14.00 
12.00 
10.00 
8.00 
4.00 . 00 

x 106 

CA 

0.0062 
. o m  
.0140 
.0182 
.0243 
-0326 
.&12 
* 0653 
.0961 

~ 

Cm 

0.0082 
.0065 .a 
.a322 
.0023 

- SO014 - .0016 - .0010 
. o m  

(p)  M o d e l  16 

R = 0.9 x lo6 

CN 

0.31.~ 
.2632 
.2015 
* 1503 
* 0979 
.a72 - . 0087 
-.ll08 - . a90 

~~ 

CA 

0.0022 
.0045 
* 0079 
.0123 - 0179 
.0246 - 0337 
* 0535 . a03 

c, 
0.0032 
.0027 

.0023 

.0031 . 00% 

.0&1 
* 0059 
.ow2 

.0024 

a, deg 

21.00 
19.00 
16.00 
14.00 
12.00 
10.00 
8.00 

a, de6 

20.00 
18.00 
16.00 
14.00 
12.00 
10.00 
8.00 
6.00 
4.00 
2.00 . 00 

R = 0.66 x lo6 I 
CN 

0.34I.l 
.r93 
.1867 
* 1347 
.0845 
.0278 - .0279 

CA 

0.0036 
-0060 
.0107 
.0163 
.0223 

-0405 
- 0313 

~ 

R = 1.50 x io6 

CN 

0.30% 0 . 0 0 ~  

* 0077 
.0120 

.0242 

.0171 

- -0173 .0326 

- .1260 
- .1760 
- .2229 -0792 

Cm 

0.0026 
.a23 

.0023 

.0027 
0033 
.0038 
.0&g 
.0061 
.0078 
0093 

.0022 

25 



Model 1 2 

(a) Roof delta wings 

5 

6 7 8 9 10 

(b) Rectangular wings having aspect ratios and volume characteristics similar to delta 
wings shown in part (a). 

11 12 13 14 1: 

L-65-113 
(c) Rectangular wings with various aspect ratios. 

Figure 1.- Photographs of models. 
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cy 24+ I I 7- 
C r 

8 -1 
1 e 

a A 

Model 

1 

2 

3 

4 

5 

~. 

3, de: 

5 

5 

10 

10 

5 

A, de( 

75 

80 

75 

80 

85 

b, in. 

6.43 1 

4.23 1 

6.43 1 

4.23 1 

2.100 

c in. r'  

12 

12 

12 

12 

12 

t, in. 

1.050 

1.050 

2.116 

2.116 

1.050 

2 S , in 
P 

38.59 

25.49 

38.59 

25.49 

12.60 

sb' in' 

3.376 

2.221 

6.800 

4.475 

1.103 
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